Critical Remarks on Reference-Scaled Average Bioequivalence

Yaroslavl, 22 October 2021
Highly Variable Drugs / Drug Products

- Clinically not relevant difference Δ?
 - Based on pharmacokinetics but extrapolated to similarity of safety and efficacy in the patient population
 - Δ depends on the dose-response curves: HVD (flat), NTID (steep)
Statistical Hypotheses

• **Average Bioequivalence (ABE)**

\[H_0 : \frac{\mu_T}{\mu_R} e \{ \theta_1, \theta_2 \} \ vs \ H_1 : \theta_1 < \frac{\mu_T}{\mu_R} < \theta_2, \]

where the – fixed – limits \{ \theta_1, \theta_2 \} of the acceptance range depend on the clinically not relevant difference \(\Delta \) by

\[\theta_1 = 1 - \Delta, \ \theta_2 = (1 - \Delta)^{-1} \]

• **Scaled Average Bioequivalence (SABE)**

\[H_0 : \frac{\mu_T}{\mu_R} / \sigma_{wR} e \{ \theta_{s1}, \theta_{s2} \} \ vs \ H_1 : \theta_{s1} < \frac{\mu_T}{\mu_R} / \sigma_{wR} < \theta_{s2}, \]

where \(\sigma_{wR} \) is the standard deviation of the reference and the scaled limits \{ \theta_{s1}, \theta_{s2} \} of the acceptance range depend on conditions given by the agency.
Frameworks

- Implemented

Average Bioequivalence with Expanding Limits «ABEL» (EMA, EEU, ...)

Reference-Scaled Average Bioequivalence «RSABE» (FDA, CDE)
Lack of Harmonization

- $\Delta > 20\%$
 - GCC $25\% \rightarrow$ BE-limits $75.00 - 133.33\%$ (C_{max} only)
 - EMA, EEU Scaled based on CV_{wR} (C_{max} only)
 - WHO Like EMA (if justified, also AUC)
 - HC Like EMA (AUC only)
 - FDA Scaled based on CV_{wR} (AUC and C_{max})

<table>
<thead>
<tr>
<th>EMA, EEU, WHO, …</th>
<th>Health Canada</th>
<th>FDA, CDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV_{wR}</td>
<td>BE limits (%)</td>
<td>CV_{wR}</td>
</tr>
<tr>
<td>≤ 30</td>
<td>$80.00 - 125.00$</td>
<td>≤ 30</td>
</tr>
<tr>
<td>35</td>
<td>$77.23 - 129.48$</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>$74.62 - 143.02$</td>
<td>40</td>
</tr>
<tr>
<td>45</td>
<td>$72.15 - 138.59$</td>
<td>45</td>
</tr>
<tr>
<td>≥ 50</td>
<td>$69.84 - 143.19$</td>
<td>≥ 50</td>
</tr>
<tr>
<td>≥ 57.4</td>
<td>$66.7 - 150.0$</td>
<td>≥ 57.4</td>
</tr>
</tbody>
</table>

$100 \exp(\mp 0.760 \cdot s_{\text{wR}})$

$100 \exp(\mp 0.8925742 \cdot s_{\text{wR}})$
Sample Sizes

- **Example TRTR | RTRT**
 - Assumed T/R-ratio = 0.90
 - Target power ≥ 80%
- **RSABE requires smaller sample sizes for target (desired) power than the ABEL variants**
Power

- **Example TRTR | RTRT**
 - Designed for ABEL
 - Assumed $CV_{WR} = 40\%$
 - Assumed T/R-ratio = 0.90
 - Target power $\geq 80\%$
 - $n = 30$ (80.7% power)
- **For any given sample size** the ABEL variants are less powerful than RSABE
- **Hypothetical situation**
 - The *same* study is submitted to *different* agencies
 - Might *pass* for one and *fail* for another
Inflation of the Type I Error

- SABE as implemented by agencies in ...
 - ABEL
 - RSABE
- ... are frameworks, where the acceptance limits are random variables depending on the observed variability
 - Strictly speaking, Δ is not defined beforehand
 - The model is based on the true – but unknown – population parameter σ_{wR}, whereas the study is assessed based on the sample s_{wR}
 - This may lead to a misclassification, i.e.,
 - the limits are scaled (because $CV_{wR} > 30\%$), although the drug is not highly variable and hence,
 - the chance to pass increases, compromising the patient’s risk1,2

Inflation of the Type I Error

- Example TRTR | RTRT

ABEL

Inflated \(TIE\) with \(CV_{WR} \sim 24 - 42\%\)
- low dependency on sample size
 \((n = 20: 0.0800, n = 120: 0.0838)\)
- Maximum empiric \(TIE\) at true \(CV_{WR} = 30\%\)

RSABE

Inflated \(TIE\) with \(CV_{WR} < 30\%\)
- high dependency on sample size
 \((n = 20: 0.1251, n = 120: 0.2421)\)
Inflation of the Type I Error

- Example TRTR | RTRT
 - \(10^6\) simulated\(^1\) studies
 - \(n = 24, 36, 48\)
 - True \(CV_{WR} = 20 - 65\%\)
 - True T/R-ratio = \(\theta_{s2}\)
 - a Conventional ABE
 - b ABEL (EMA, EEU, and others)
 - c ABEL (Health Canada)
 - d ABEL (GCC)
 - e RSABE (implied limits)\(^2\)
 - f RSABE (desired consumer risk model)\(^2\)

1. No exact method exists for power and hence, the TIE in the implemented regulatory frameworks. Therefore, extensive simulations under the Null are required.
Realized Δ_r

- **Example TRTR | RTRT**
 - 500 studies simulated for ABEL
 - $n = 34$ (81.2% power)
 - True $CV_{wR} = 35\%$ ($\Delta = 22.77\%$)
 - True T/R-ratio = 0.90
 - 417 studies passed (83.4%)
 - Realized $CV_{wR} 22.30 – 51.25\%$ ($\Delta_r 20.00 – 30.16\%$)

- **Every study sets its own rules, awarding ones with high CV_{wR}**
 - Without access to the study report, Δ_r is unknown to physicians, pharmacists, and patients alike
 - This is an unsatisfactory situation – we put the cart before the horse
Critical Remarks on Reference-Scaled Average Bioequivalence

Thank You!
Благодарю вас!

Helmut Schütz
BEbac
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at